Problem Link : https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=422
Solution Idea:
This is a LIS problem. But in this problem input size/number of elements in the list is not mentioned. So we have to use faster solution like NlogK algorithm because if the input list is large then O(n^2) solution can give a TLE. So in this problem we use LIS NlogK approach. We need to just run the algorithm and print the solution.
/* +-+ +-+ +-+ |R| |.| |S| +-+ +-+ +-+ */ #include <bits/stdc++.h> #define pii pair <int,int> #define sc scanf #define pf printf #define Pi 2*acos(0.0) #define ms(a,b) memset(a, b, sizeof(a)) #define pb(a) push_back(a) #define MP make_pair #define db double #define ll long long #define EPS 10E-10 #define ff first #define ss second #define sqr(x) (x)*(x) #define D(x) cout<<#x " = "<<(x)<<endl #define VI vector <int> #define DBG pf("Hi\n") #define MOD 100007 #define MAX 10000 #define CIN ios_base::sync_with_stdio(0); cin.tie(0) #define SZ(a) (int)a.size() #define sf(a) scanf("%d",&a) #define sfl(a) scanf("%lld",&a) #define sff(a,b) scanf("%d %d",&a,&b) #define sffl(a,b) scanf("%lld %lld",&a,&b) #define sfff(a,b,c) scanf("%d %d %d",&a,&b,&c) #define sfffl(a,b,c) scanf("%lld %lld %lld",&a,&b,&c) #define loop(i,n) for(int i=0;i<n;i++) #define REP(i,a,b) for(int i=a;i<b;i++) #define TEST_CASE(t) for(int z=1;z<=t;z++) #define PRINT_CASE printf("Case %d: ",z) #define all(a) a.begin(),a.end() #define intlim 2147483648 #define inf 1000000 #define ull unsigned long long using namespace std; /*----------------------Graph Moves----------------*/ //const int fx[]={+1,-1,+0,+0}; //const int fy[]={+0,+0,+1,-1}; //const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1}; // Kings Move //const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1}; // Kings Move //const int fx[]={-2, -2, -1, -1, 1, 1, 2, 2}; // Knights Move //const int fy[]={-1, 1, -2, 2, -2, 2, -1, 1}; // Knights Move /*------------------------------------------------*/ /*-----------------------Bitmask------------------*/ //int Set(int N,int pos){return N=N | (1<<pos);} //int reset(int N,int pos){return N= N & ~(1<<pos);} //bool check(int N,int pos){return (bool)(N & (1<<pos));} /*------------------------------------------------*/ vector<int>v,print_ans; int n=0; int L[1000000]; int I[1000000]; int LIS_NlogK() { loop(i,n+2) I[i]=inf; I[0]=-inf; int length=0; for(int i=1;i<=n;i++) { int low=0, hi=length, mid; while(low<=hi) { mid=(low+hi)/2; if(v[i]>I[mid]) low=mid+1; else hi=mid-1; } I[low]=v[i]; L[i]=low; length=max(length,low); } return length; } int main() { // freopen("in.txt","r",stdin); ///freopen("out.txt","w",stdout); v.pb(-100000); int a; while(sf(a)==1) { n++; v.pb(a); } int ans=LIS_NlogK(); int i; int temp=ans; for(i=n;i>0;i--) { if(L[i]==temp) { temp--; print_ans.pb(v[i]); break; } } for(--i;i>0 && temp ;i--) { if(v[i]<print_ans.back() && L[i]==temp) { print_ans.pb(v[i]); temp--; } } printf("%d\n-\n",ans); for(i=ans-1;i>=0;i--) printf("%d\n",print_ans[i]); return 0; }