Problem Link :https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=1605
Solution Idea:
The main problem is an array of integers is given and we have to divide the array into two small array in such a way so that the sum of both arrays are same.
At first we take input and sum up the array values. if the total sum is odd then it’s confirm that we can’t split it into two equal sum. so that we can output “NO”.
If the sum is Even then we can use knapsack of Coin Change any algorithm to check if we can make the (sum/2) value from the given array values. Here I am using knapsack.
As the input of this problem is tricky because we don’t know how many numbers there will be in a line. So for this problem I use stringstream to solve this problem.
/* +-+ +-+ +-+ |R| |.| |S| +-+ +-+ +-+ */ #include <bits/stdc++.h> #define pii pair <int,int> #define sc scanf #define pf printf #define Pi 2*acos(0.0) #define ms(a,b) memset(a, b, sizeof(a)) #define pb(a) push_back(a) #define MP make_pair #define db double #define ll long long #define EPS 10E-10 #define ff first #define ss second #define sqr(x) (x)*(x) #define D(x) cout<<#x " = "<<(x)<<endl #define VI vector <int> #define DBG pf("Hi\n") #define MOD 100007 #define MAX 10000 #define CIN ios_base::sync_with_stdio(0); cin.tie(0) #define SZ(a) (int)a.size() #define sf(a) scanf("%d",&a) #define sfl(a) scanf("%lld",&a) #define sff(a,b) scanf("%d %d",&a,&b) #define sffl(a,b) scanf("%lld %lld",&a,&b) #define sfff(a,b,c) scanf("%d %d %d",&a,&b,&c) #define sfffl(a,b,c) scanf("%lld %lld %lld",&a,&b,&c) #define loop(i,n) for(int i=0;i<n;i++) #define REP(i,a,b) for(int i=a;i<b;i++) #define TEST_CASE(t) for(int z=1;z<=t;z++) #define PRINT_CASE printf("Case %d: ",z) #define all(a) a.begin(),a.end() #define intlim 2147483648 #define inf 1000000 #define ull unsigned long long using namespace std; /*----------------------Graph Moves----------------*/ //const int fx[]={+1,-1,+0,+0}; //const int fy[]={+0,+0,+1,-1}; //const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1}; // Kings Move //const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1}; // Kings Move //const int fx[]={-2, -2, -1, -1, 1, 1, 2, 2}; // Knights Move //const int fy[]={-1, 1, -2, 2, -2, 2, -1, 1}; // Knights Move /*------------------------------------------------*/ /*-----------------------Bitmask------------------*/ //int Set(int N,int pos){return N=N | (1<<pos);} //int reset(int N,int pos){return N= N & ~(1<<pos);} //bool check(int N,int pos){return (bool)(N & (1<<pos));} /*------------------------------------------------*/ vector<int> v; int dp[30][110]; int knapsack(int idx, int val) { if(val==0) return 1; if(idx==SZ(v)) return 0; int &ret=dp[idx][val]; if(ret!=-1) return ret; int p=0,q=0; if(val-v[idx]>=0) p=knapsack(idx+1,val-v[idx]); q=knapsack(idx+1,val); return ret=p|q; } int main() { ///freopen("in.txt","r",stdin); ///freopen("out.txt","w",stdout); int m; cin>>m; getchar(); while(m--) { string str; getline(cin,str); stringstream ss; ss<<str; int val; int sum=0; while(ss>>val) { v.pb(val); sum+=val; } if(sum & 1) cout<<"NO"<<endl; else { ms(dp,-1); if(knapsack(0,sum/2)) cout<<"YES"<<endl; else cout<<"NO"<<endl; } v.clear(); } return 0; }