Problem Link : http://lightoj.com:81/volume/problem/1132
Soluton Idea:
————–
f(x)=1^k+2^k+3^k+……….+x^k
f(1)=1
f(x+1)=f(x)+(x+1)^k
from Binomial Co efficient we know –
(x+1)^n= nC0 x^n + nC1 x^n-1 + nC2 x^n-2+…………..+ nCn-1 x^1 + nCn x^0
Now make a matrix with co efficient of x so that we can find f(x+1) from f(x).
details: http://lbv-pc.blogspot.com/2012/05/summing-up-powers.html
#include <bits/stdc++.h> #define pii pair <int,int> #define pll pair <long long,long long> #define sc scanf #define pf printf #define Pi 2*acos(0.0) #define ms(a,b) memset(a, b, sizeof(a)) #define pb(a) push_back(a) #define MP make_pair #define db double #define ll long long #define EPS 10E-10 #define ff first #define ss second #define sqr(x) (x)*(x) #define D(x) cout<<#x " = "<<(x)<<endl #define VI vector <int> #define DBG pf("Hi\n") //#define MOD 1000000007 #define CIN ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0) #define SZ(a) (int)a.size() #define sf(a) scanf("%d",&a) #define sfl(a) scanf("%lld",&a) #define sff(a,b) scanf("%d %d",&a,&b) #define sffl(a,b) scanf("%lld %lld",&a,&b) #define sfff(a,b,c) scanf("%d %d %d",&a,&b,&c) #define sfffl(a,b,c) scanf("%lld %lld %lld",&a,&b,&c) #define stlloop(v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++) #define loop(i,n) for(int i=0;i<n;i++) #define loop1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<b;i++) #define RREP(i,a,b) for(int i=a;i>=b;i--) #define TEST_CASE(t) for(int z=1;z<=t;z++) #define PRINT_CASE printf("Case %d: ",z) #define CASE_PRINT cout<<"Case "<<z<<": " #define all(a) a.begin(),a.end() #define intlim 2147483648 #define infinity (1<<28) #define ull unsigned long long #define gcd(a, b) __gcd(a, b) #define lcm(a, b) ((a)*((b)/gcd(a,b))) using namespace std; /*----------------------Graph Moves----------------*/ //const int fx[]={+1,-1,+0,+0}; //const int fy[]={+0,+0,+1,-1}; //const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1}; // Kings Move //const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1}; // Kings Move //const int fx[]={-2, -2, -1, -1, 1, 1, 2, 2}; // Knights Move //const int fy[]={-1, 1, -2, 2, -2, 2, -1, 1}; // Knights Move /*------------------------------------------------*/ /*-----------------------Bitmask------------------*/ //int Set(int N,int pos){return N=N | (1<<pos);} //int reset(int N,int pos){return N= N & ~(1<<pos);} //bool check(int N,int pos){return (bool)(N & (1<<pos));} /*------------------------------------------------*/ /*----------------------Matrix-----------------------*/ // int MOD= // ll MOD= (1LL)<<32; struct matrix { unsigned int mat[52][52]; int row,col; matrix() { memset(mat,0,sizeof mat); } matrix(int a, int b) { row=a,col=b; memset(mat,0,sizeof mat); } matrix operator*(const matrix &p) const { assert(col == p.row); matrix temp; temp.row = row; temp.col = p.col; for (int i = 0; i < temp.row; i++) { for (int j = 0; j < temp.col; j++) { ll sum = 0; for (int k = 0; k <col; k++) { sum += ((mat[i][k]) * (p.mat[k][j])); // sum%=MOD; } temp.mat[i][j] = sum; } } return temp; } matrix operator+ (const matrix &p) const { assert(row==p.row && col==p.col); matrix temp; temp.row=row; temp.col=col; for(int i=0;i<temp.row;i++) { for(int j=0;j<temp.col;j++) temp.mat[i][j]=((mat[i][j])+(p.mat[i][j]));; } return temp; } matrix identity() { matrix temp; temp.row=row; temp.col=col; for(int i=0;i<row;i++) temp.mat[i][i]=1; return temp; } matrix pow(ll pow) { matrix temp=(*this); matrix ret=(*this).identity(); while(pow) { if(pow % 2==1) ret=ret*temp; temp=temp*temp; pow/=2; } return ret; } void show() { printf("-----------------------------\n"); for(int i=0;i<row;i++) { for(int j=0;j<col;j++) printf("%lld ",mat[i][j]); printf("\n"); } printf("-----------------------------\n"); } }; /*--------------------------Matrix End---------------------*/ unsigned int nCr[55][55]; void compute_nCr() { nCr[0][0]=nCr[1][1]=1; for(int i=1;i<52;i++) { nCr[i][0]=1; for(int j=1;j<52;j++) nCr[i][j]=nCr[i-1][j]+nCr[i-1][j-1]; } } int main() { // freopen("in.txt","r",stdin); ///freopen("out.txt","w",stdout); int t; sf(t); compute_nCr(); // int a=5; // while(a--) // { // int a,b; // cin>>a>>b; // cout<<nCr[a][b]<<endl; // } TEST_CASE(t) { ll n,k; sffl(n,k); matrix base(k+2,k+2); base.mat[0][0]=1; for(int i=1;i<=k+1;i++) { base.mat[0][i]=nCr[k][i-1]; base.mat[1][i]=nCr[k][i-1]; } for(int i=2;i<=k+1;i++) { for(int j=i;j<=k+1;j++) base.mat[i][j]=nCr[k-i+1][j-i]; } // base.show(); matrix temp(k+2,1); for(int i=0;i<=k+1;i++) temp.mat[i][0]=1; base=base.pow(n-1); // base.show(); // temp.show(); base=base*temp; PRINT_CASE; printf("%u\n",base.mat[0][0]); } return 0; }