Problem Link : http://www.spoj.com/problems/KALTSUM/
Solution Idea:
Break the problem into two cases: When k is greater than sqrt(n) and when k is less tahn or equal sqrt(n). Deal with them in different ways.
Case 1: For any k>sqrt(N) there will be less than sqrt(N) alternating segment. If you have an array, having cumulative sum, you can get the sum of a contiguous segment in O(1). So you can just loop over the alternating parts and get the sum in O(sqrt(N)) for a single query.
Case 2: Now when k <= sqrt(n), you need to do some preprocessing.
let arr[k][i] be the "k alternating sum" of a subarray which starts at position i and keeps alternating untill it reaches a position x such that if you add another segment of size k then it will go out of the array. [ This array can be computed in O(N) , and as you're doing it for every k < sqrt(n), the total complexity is O(N * sqrt(N))] With the help of this array, you can answer every query having k < sqrt(N) in O(1).
This solution idea is from this link.
#include <bits/stdc++.h> #define pii pair <int,int> #define pll pair <long long,long long> #define sc scanf #define pf printf #define Pi 2*acos(0.0) #define ms(a,b) memset(a, b, sizeof(a)) #define pb(a) push_back(a) #define MP make_pair #define db double #define ll long long #define EPS 10E-10 #define ff first #define ss second #define sqr(x) (x)*(x) #define D(x) cout<<#x " = "<<(x)<<endl #define VI vector <int> #define DBG pf("Hi\n") #define MOD 1000000007 #define CIN ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0) #define SZ(a) (int)a.size() #define sf(a) scanf("%d",&a) #define sfl(a) scanf("%lld",&a) #define sff(a,b) scanf("%d %d",&a,&b) #define sffl(a,b) scanf("%lld %lld",&a,&b) #define sfff(a,b,c) scanf("%d %d %d",&a,&b,&c) #define sfffl(a,b,c) scanf("%lld %lld %lld",&a,&b,&c) #define stlloop(v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++) #define loop(i,n) for(int i=0;i<n;i++) #define loop1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<b;i++) #define RREP(i,a,b) for(int i=a;i>=b;i--) #define TEST_CASE(t) for(int z=1;z<=t;z++) #define PRINT_CASE printf("Case %d: ",z) #define LINE_PRINT_CASE printf("Case %d:\n",z) #define CASE_PRINT cout<<"Case "<<z<<": " #define all(a) a.begin(),a.end() #define intlim 2147483648 #define infinity (1<<28) #define ull unsigned long long #define gcd(a, b) __gcd(a, b) #define lcm(a, b) ((a)*((b)/gcd(a,b))) using namespace std; /*----------------------Graph Moves----------------*/ //const int fx[]={+1,-1,+0,+0}; //const int fy[]={+0,+0,+1,-1}; //const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1}; // Kings Move //const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1}; // Kings Move //const int fx[]={-2, -2, -1, -1, 1, 1, 2, 2}; // Knights Move //const int fy[]={-1, 1, -2, 2, -2, 2, -1, 1}; // Knights Move /*------------------------------------------------*/ /*-----------------------Bitmask------------------*/ //int Set(int N,int pos){return N=N | (1<<pos);} //int reset(int N,int pos){return N= N & ~(1<<pos);} //bool check(int N,int pos){return (bool)(N & (1<<pos));} /*------------------------------------------------*/ ll dp[318][100005]; ll csum[100005]; ll ara[100005]; int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int n,q; sff(n,q); for(int i=1;i<=n;i++) { sfl(ara[i]); csum[i]=csum[i-1]+ara[i]; } int root=ceil(sqrt(n)); for(int i=1;i<=root;i++) { ll temp=0,sub=0; for(int j=n;j>=1;j--) { temp+=ara[j]; if(j+i>n) sub=0; else sub=ara[j+i]; temp-=sub; if(j+i-1>n) dp[i][j]=0; else dp[i][j]=temp-dp[i][j+i]; } } // // for(int i=1;i<=root;i++,cout<<endl) // for(int j=1;j<=n;j++) // cout<<dp[i][j]<<" "; while(q--) { int a,b,k; sfff(a,b,k); ll ans=0; if(k>root) { for(int i=a,j=0;i<=b;i+=k,j++) { if(j%2==0) ans+=csum[i+k-1]-csum[i-1]; else ans-=csum[i+k-1]-csum[i-1]; } pf("%lld\n",ans); } else { int turn=(b-a+1)/k; if(turn%2==1) pf("%lld\n",dp[k][a]+dp[k][b+1]); else pf("%lld\n",dp[k][a]-dp[k][b+1]); } } return 0; }