Problem Link : https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=2203
Solution Idea:
int MFS(int N,int K)
{
int ret=0;
for(int i=1;N;i=-i)
{
ret+=N*i;
N/=K;
}
return ret;
}
So how does this work? Let us start with the full set {1…N}. We need to remove some numbers from this so that it is a K-multiple free set. For this, let us remove every multiple of K from the set. These are the numbers K,2K… and there are N/K of them. Removing them gives us a K-multiple free set. But we have removed some numbers unnecessarily. Since we already removed K, removing K² was unnecessary. Thus we can put back K²,2K²…, which would be N/K² numbers in total. But this ends up putting both K² and K³ into the set and we need to remove all multiples of K³ now. Proceeding in this fashion, it is easy to see that the cardinality of the final set is N – N/K + N/K² – N/K³…
In general, an input size of N=10⁹ in a mathematical problem should give you the idea that neither the time or space complexity of the solution can be O(N) and you have to come up with some sort of a closed form solution.
This solutino idea is from this link.
#include <bits/stdc++.h>
#define pii pair <int,int>
#define pll pair <long long,long long>
#define sc scanf
#define pf printf
#define Pi 2*acos(0.0)
#define ms(a,b) memset(a, b, sizeof(a))
#define pb(a) push_back(a)
#define MP make_pair
#define db double
#define ll long long
#define EPS 10E-10
#define ff first
#define ss second
#define sqr(x) (x)*(x)
#define D(x) cout<<#x " = "<<(x)<<endl
#define VI vector <int>
#define DBG pf("Hi\n")
#define MOD 1000000007
#define CIN ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define SZ(a) (int)a.size()
#define sf(a) scanf("%d",&a)
#define sfl(a) scanf("%lld",&a)
#define sff(a,b) scanf("%d %d",&a,&b)
#define sffl(a,b) scanf("%lld %lld",&a,&b)
#define sfff(a,b,c) scanf("%d %d %d",&a,&b,&c)
#define sfffl(a,b,c) scanf("%lld %lld %lld",&a,&b,&c)
#define stlloop(v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define loop(i,n) for(int i=0;i<n;i++)
#define loop1(i,n) for(int i=1;i<=n;i++)
#define REP(i,a,b) for(int i=a;i<b;i++)
#define RREP(i,a,b) for(int i=a;i>=b;i--)
#define TEST_CASE(t) for(int z=1;z<=t;z++)
#define PRINT_CASE printf("Case %d: ",z)
#define LINE_PRINT_CASE printf("Case %d:\n",z)
#define CASE_PRINT cout<<"Case "<<z<<": "
#define all(a) a.begin(),a.end()
#define intlim 2147483648
#define infinity (1<<28)
#define ull unsigned long long
#define gcd(a, b) __gcd(a, b)
#define lcm(a, b) ((a)*((b)/gcd(a,b)))
using namespace std;
/*----------------------Graph Moves----------------*/
//const int fx[]={+1,-1,+0,+0};
//const int fy[]={+0,+0,+1,-1};
//const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1}; // Kings Move
//const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1}; // Kings Move
//const int fx[]={-2, -2, -1, -1, 1, 1, 2, 2}; // Knights Move
//const int fy[]={-1, 1, -2, 2, -2, 2, -1, 1}; // Knights Move
/*------------------------------------------------*/
/*-----------------------Bitmask------------------*/
//int Set(int N,int pos){return N=N | (1<<pos);}
//int reset(int N,int pos){return N= N & ~(1<<pos);}
//bool check(int N,int pos){return (bool)(N & (1<<pos));}
/*------------------------------------------------*/
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int t;
sf(t);
TEST_CASE(t)
{
ll n,k;
sffl(n,k);
if(k==0)
pf("0\n");
else
{
ll ans=n;
ll kk=k;
int cnt=1;
while(kk<=n)
{
if(cnt%2)
ans-=(n/kk);
else
ans+=(n/kk);
kk*=k;
cnt++;
}
pf("%lld\n",ans);
}
}
return 0;
}